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1. INTRODUCTION

The random walk on a discrete lattice has been analysed in completely different fields
such as chemistry [1, 2], ecology [3, 4], and general physics [5, 6]. The general idea has
been to insert a diffusion point at the centre of a 1D, 2D, or 3D discrete lattice and to follow
the evolution from an analytical or numerical [7–9] point of view. Here we will start by
analysing the stationary state of the random walk in 2D (Section 2) with only one diffusion
point at the centre of the lattice. Once the structural behaviour of the visitation grid, as
predicted in [8, 9], has been confirmed (in particular the existence of 3 different zones), we
continue by inserting the diffusion on a 2D and 3D lattice (Section 3) from many injection
points. Finally in Section 4, two applications of the developed theory concerning the field
of the astrophysics are reported.

2. THE 2D RANDOM WALK

The random walk in the plane is begun by adopting the following rules:

1. The process starts in the middle of the grid of dimension NDIM.
2. The random walk is then performed with equal steps (one lattice point) having four

possible directions (up, right, down, and left).
3. Every time a grid point is reached, the two-dimensional array that memorises the

times a grid point has been visited is increased by one.
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FIG. 1. Contours representing the number of distinct sites visited by NPOINTS walkers. NDIM= 500,
SIDE= 100, NPOINTS= 1000.

4. When the boundaries of circular shape are reached the process restarts from
point 1.

5. The process stops after NPOINTS trials.

Once the random walk is terminated, the ISO-contours of the two-dimensional array rep-
resenting the visitation points are made by using two different methods:

1. Traditional contouring to display a surface function of two variables.
2. Using different colours (black and white) to mark every pixel. This technique,

developed to represent the Mandelbrot set, avoids the smoothing of the canonical contours.

Here a pseudo-colour algorithm is used and Fig. 1 clearly shows the increase of the roughness
with distance from the centre. The properties of the number of distinct sites visited when
there are N random walkers are analysed in [1] from a analytical point of view. Here we
are interested in the stationary state (t→∞) and we assume in analogy with [1] that the
visitation numberNv(x)≈ Psurv(x)≈ ae−bx where x is the distance (or the number of pixels)
from the diffusion centre andPsurv is the probability of surviving at a distance x. On applying
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FIG. 2. Cut of the matrix representing the visitation grid: NDIM= 500, SIDE= 100, NPOINTS= 1000,
b(first phase)= 23.74, and b(first phase)= 1.393.

the logarithm, the following will easily be found,

Log(Nv) ≈ Log a− bx (1)

and we can therefore search for a linear behaviour in the Log(distance) versus Log(visitation
grid). In effect two distinct zones, I and II, are easily found plus an increase of the undulation
in phase II; see Fig. 2.

At this point, the algorithm is generalised by introducing the concept of multiple injection
points (in the following IP). In the previous case, there was only one injection point of the
particles which was exactly in the middle of the grid, and now many IP can be taken into
account. In order to continue, the boundary conditions should now be better specified so
as to introduce equal area of walk relative to the different IP. Therefore, the concept of a
forbidden area is introduced using the following algorithm:

1. First, an area side× side is chosen; the IP are then generated by a random process
with coordinates x R1 in [xl , xu] and y R2 in [yl , yu]; herexl = yl = red2d × sideand
xu = yu = side− red2d × side. Herered2d is the reduction factor in 2D.

2. The minimum distance,rmin, between the IP and the four sides of the box is extracted.
3. The distance from the nearest IP,rnear, is computed for every grid point. Ifrnear>

rmin, this grid point is forbidden to the random walk.
4. The random walk is started with a certain number of IP, each one experiencing

NPOINTS random walkers. Every time a forbidden zone is reached we start with another
particle.

This algorithm is now tentatively described through the following lines of pseudo-code:



THE RANDOM WALK 385

FIG. 3. The forbidden zone marked in black, the IP with circles.

do i=1 to IP
find NPOINTS of the considered IP
do j=1 to NPOINTS

make the random walk
if we reach the forbidden zonethen
stop the cycle
end if

end do
end do

A typical run of the forbidden zone is represented in Fig. 3 and the resulting contours of
ISO-visited zones in Fig. 4 using a colour algorithm.

3. THE 3D RANDOM WALK

We can now consider the extension to the third dimension which requires a few different
points:
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FIG. 4. Colour contours representing the number of distinct sites visited by NPOINTS× IP walkers. IP= 10,
NPOINTS= 2000, NDIM= 500, SIDE= 100, RED2D= 0.05.

• The random walk has now six degrees of freedom.
• The forbidden area now becomes a volume. Attention should be given to the dis-

placement of the IP in the box and the following procedure is suggested:
1. The volume that the IP are occupying is computed: the minimum distance of the

IP from a side is now zero.
2. This volume of factorred is then reduced and the IP are reinserted into the box

in a encapsulated fashion. Now the minimum distancermin from a face is increased.
3. For every lattice the distance is computed from the nearest IP,rnear. If rnear>

rmin, this point is forbidden to the random walk.
• The number of visits is memorised on a three-dimensional grid T(i, j, k).

In order to examine a practical example, IP1 IP were inserted in a first torus and IP2 IP
in a second TORUS. Geometrically speaking, the two tori are joined like two links of a
chain. These IP are reported in Fig. 5 and in order to take into account the great variety of
prospectives, the observers parameters are introduced, which are the two angles of viewpoint
from the centre of the work-box in degreeφ (angle in the X-Y plane) andθ (vertical angle
from the X-Y plane).
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FIG. 5. The 3D display of the IP:θ = 30 andφ= 30.

A problem now arises concerning the visualisation of the three-dimensional grid A (i, j, k).
A first visualisation process consists in producing the contours of a slice of the 3D grid: in
other words an index is fixed over three (for example, the one in the middle of z) and the
resulting 2D grid is transmitted to the contouring routines; see, for example, Fig. 6.

The adopted notation in the text and figures of this section is

NDIM number of rows /columns eventual depth of the lattice
NPOINTS number of trials each one with different initial seed
IP sites of injection of the random walk
rmin minimum distance between the IP and the sides/faces of the box
rnear distance of the pixel from the nearest IP
red reduction of the initial volume
IP1, IP2 number of IP of the first and second torus
coef parameter that fixes the isovalue of the 3D array t
side physical dimension of the box
NCONT parameter that fixes the number of contour levels.

4. EXAMPLES

The theory already developed could be applied to experimental physics [10] or to astro-
physics. In the following subsection, two applications will be shown of diffusion on a 3D
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FIG. 6. Contours of a slice of the visitation grid: IP1= 100, IP2= 100, IP= 200, NPOINTS= 100,
NDIM = 100, NCONT= 10, and red= 0.7.

lattice belonging to astrophysics. Another way to visualise the 3D visitation grid is to sum
the elements along the line of sight. From a practical point of view the final result will be a
two-dimensional matrixAi, j representing the visitation grid

Ai, j =
NDIM∑
k=1

Ti, j,k. (2)

The astrophysical counterpart of such a operation is the so-called “thin layer approximation.”

4.1. SN

Supernova explosions produce an expanding shell which interacts with the ISM. In the
layer of interaction between the expanding shell and the ISM, there is a production of knotty
structures due to the development of the Rayleigh–Taylor instabilities. In this case, we place
our IP between two radiusRmax andRmin representing the expansion layer of the SN. The
number of IP are fixed and in order to be more realistic, a fractal distribution of the number
of trials is provided,

f (N) = C
1

ND
, (3)
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FIG. 7. Colour contours of the two-dimensional surface representing the emissivity in a thin layer with IP
points and fractal distribution of the number of trials in 3D. The physical parameters are IP= 900, NDIM= 120,
red= 0.7, Nmax= 30, Nmin= 10, Rmax= 2.5 pc,Rmin= 0.22 pc, and SIDE= 5 pc.

where theC take the value

C = 1− D

N−D+1
max − N−D+1

min

, (4)

whereNmin andNmax are the minimum and maximum number of trials possible in each IP.
The diameter of the known remnants spans the range from 3 to 60 pc and attention is fixed
on Cas A and its possible diameter of 5 pc [11]. Some typical observational features such
as edge brightening and presence of knotty structures are reproduced in the simulation of
Fig. 7.

Adopted notation in the text and figures of this section is

Rmax, Rmin maximum and minimum radius of the shell of emission
Nmin, Nmax minimum and maximum number of trials for each IP
C constant in front of the fractal distribution.

4.2. H-H Objects

We know that sometimes an optical jet can be observed connected with molecular out-
flows in young stellar objects. Often they consist of a chain of knots observed, for example,
in the light of SII . The shape of these jets could be simulated through the theory of the
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Kelvin–Helmholtz instabilities with the addition of artificial noise. All the details are ex-
plained in [12]. The building blocks of this theory will now be briefly reviewed. We start
from observable quantities that can be measured on the radio-maps such as the total length
Lobs, the wavelengthλ1

obs of the wiggles along the jet, the distanceλ0
obs between the knots,

and the final offset1Lobs of the centre of the jet.
These observable quantities are the identified with the following theoretical variables,

λ1
max= λ1

obs, (5)

λ0
max= λ0

obs, (6)

A0 exp

(
L

Mtada

)
= 1Lobs, (7)

nle = Lobs, (8)

wheretad = tmin · si /a.
We then have a theoretical expression fortmin the minimum time scale of the instability,

λmax the wavelength connected with the most unstable mode, andle the distance over
which the most unstable mode grows by a factor e. The physical parameters that allow these
theoretical parameters to be expressed areM andν0 oncem is fixed. These parameters could
then be found through the set of nonlinear equations previously reported. More realistic
simulations are then obtained by introducingnoise; the blobs will be placed at a position
given by a pseudo-random real number taken from a normal (Gaussian) distribution with
meanx̄, wherex̄ is the predicted distance, and standard deviationσ whereσ = λ1/noise.
The circles of the two-dimensional blobs are then simply transformed into spheres. The
number of IP is proportional to the jet averaged radius and the number of trials is equal
for every IP. Choosing one object, for example, HH34 [13], the following observational
parameters are measured on the optical image:

Lobs= 48 averaged radius units

λ0
obs= 4.0 averaged radius units

λ1
obs= 19.2 averaged radius units

1Lobs= 0.96 averaged radius units
α = 15 degree

scaling= 1.1
noise= 0.8.

The four nonlinear equations are then solved and the following numerical values are found:

n = 2.75

M = 17.28

ν0 = 9.61

A0 = 5.57 · 10−3.

The final result of the simulation is reported in Fig. 8.
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FIG. 8. Colour contours of the two-dimensional surface representing the optical shocked emission of HH-34.
The physical parameters are IP= 643, NPOINTS= 10, NDIM= 120, and red= 0.8. The coordinates are expressed
in averaged jet-radius units.

Adopted notation in the text and figures in this section on H-H objects is

m azimuthal number
n number of e-folding lengths
M Mach number considered
ν0 ratio of the density inside to that outside
Lobs length of the jet in averaged radius-units
1Lobs lateral displacement in averaged radius-units
A0 amplitude of the oscillations
tmin time scale of the more unstable mode
λmax wavelength of the more unstable mode
le length over which the most unstable mode grows of by a factor e
scaling x-displacement over jet’s length on the map
α angle of rotation from the horizontal position
noise deviation from the predicted distance.

5. CONCLUDING REMARKS

The random walk on a 2D or 3D discrete lattice could be set up once the concept of
forbidden zone is introduced so as to maintain the symmetry in the process of diffusion. In



392 L. ZANINETTI

order to visualise such phenomena, the traditional colour code algorithm has been used in
two dimensions and the ISO-density contours in three dimensions. The developed technique
is useful in giving a theoretical framework to the diffusion images of astrophysical objects:
here, the SN remnants and optical jets were analysed.
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